Картинки из квадратов
\
Арифметика "на квадратах"
\
Некоторые факты элементарной математики
\
Натуральные числа
\
Начала теоретической (или 'высшей') арифметики
\
Теоретическая арифметика (И. В. Арнольд)
\
Делимость чисел. Разложение на простые множители
\
7.4.1.2.7.13.110. Следствия теоремы
о разложении на простые множители. Числовые функции [x] и φ(x)
Начало см.
здесь
и
здесь
.
Арнольд И. В.
Теоретическая арифметика.
М.: Гос. уч. пед. изд-во, 1938, cc. 425 .
7.4.1.2.7.13.110.2. Функция Мебиуса μ(d)
7.4.1.2.7.13.110.3. Функция Эйлера φ(x)
7.4.1.2.7.13.110.4. Два важных свойства функции Эйлера φ(x)
Предложение об однозначности разложения числа
n
на простые множители см. у И. В. Арнольда
здесь
.
Определение простого числа у И. В. Арнольда см.
здесь
.
Определение простого числа у Г. Дэвенпорта см.
здесь
.
Предложение об однозначности разложения числа
n
("основную теорему арифметики") на простые множители см. у Г. Дэвенпорта
здесь
.
О числовых функциях в учебнике Д. Ф. Егорова см.
здесь
и
здесь
.
Главу о "числовых функциях" в учебнике А. А. Бухштаба см. здесь
здесь
.
7.4.1.2.7.13.110.2. Функция Мебиуса μ(d)
7.4.1.2.7.13.110.3. Функция Эйлера φ(x)
7.4.1.2.7.13.110.4. Два важных свойства функции Эйлера φ(x)
К началу данной страницы
Картинки из квадратов
\
Арифметика "на квадратах"
\
Некоторые факты элементарной математики
\
Натуральные числа
\
Начала теоретической (или 'высшей') арифметики
\
Теоретическая арифметика (И. В. Арнольд)
\
Делимость чисел. Разложение на простые множители
\