Картинки из квадратов \ Арифметика "на квадратах" \ Разное \ Музыка \ Философия и арифметика музыки \

7.3.2.1.2. Пифагорейское
учение о гармонии (1) ©

Если уменьшить длину струны или флейты вдвое, тон повысится на одну октаву. Совершенно так же, если уменьшить в отношении 3/2 и 4/3, то этому будут соответствовать интервалы квинта и кварта.
Для пифагорейцев получило первостепенное значение то, что эти важнейшие гармонические интервалы могут быть получены при помощи отношений чисел 1, 2, 3 и 4. Это было как бы подтверждением их основного принципа "Все есть число" или "Все упорядочивается в соответствии с числами".
Сами эти числа 1, 2, 3 и 4 составляли знаменитую "тетраду". Очень древнее изречение гласит: "Что есть оракул дельфийский? Тетрада! Ибо она есть музыкальная гамма сирен".
Геометрически тетрада изображалась "совершенным треугольником", арифметически — "треугольным числом" 1+2+3+4 = 10.
Лукиан рассказывает, что однажды Пифагор попросил кого-то считать, и как только человек этот произнес: "1, 2, 3, 4", Пифагор прервал его: "Видишь, — сказал он, — то, что ты называешь четырьмя, есть не что иное, как 10, совершенный треугольник и клятва наша".
Пифагорейцы, действительно, клялись "тем, кто вложил в нашу душу тетраду, — источник и корень вечной природы". Эти изречения и эта форма клятвы, действительно, являются древними; и поэтому тетраду, треугольные числа и численные отношения в гармонических интервалах мы, пожалуй, должны приписать самому Пифагору.
Умирая, Пифагор настоятельно советовал своим последователям "изучать монохорды". Согласно Гауденцию, история этого музыкального инструмента такова. Пифагор разделил линейку на 12 частей и натянул на нее струну. Укорачивая струну длиной в 12 делений до 6, 8 и 9, т. е. в отношениях 2:1, 3:2 и 4:3, он получал тоны, которые были выше на одну октаву, квинту или кварту (о тетраде, ассоциированной с числами 6, 8, 9, 12, см. здесь и здесь).
Эти самые числа 6, 8, 9, 12 встречаются почти у всех пифагорейских и неопифагорейских писателей по теории музыки. Все эти авторы определяют средние члены 9 и 8 как арифметическую и гармоническую средние между крайними членами 12 и 6.
Большей частью числом 12 обозначали высший тон, а числом 6 — низший, т. е. не прямо, а обратно пропорционально длинам струн. Что эти числа обозначали эмпирически? По-видимому, для пифагорейцев было не так существенно, обозначают ли они длины струн, или их натяжения, или скорости. Самое важное было в том, что появлялись правильные отношения для гармонических интервалов, например,
12:9 = 8:6 для кварты и 12:8 = 9:6 для квинты, как преподавал Учитель.
Традиция, приписывающая Пифагору вычисление интервалов диатонической гаммы, также заслуживает доверия; это были целый тон (9:8) и большой полутон или "леймма" (256:243); действительно, эти соотношения могут быть получены из октавы (2:1), квинты (3:2) и кварты (4:3) при помощи последовательных делений:
(3/2):(4/3) = (9/8),     (4/3):(9/8) = (32/27),     (32/27):(9/8) = (256/243).
К началу данной страницы
Картинки из квадратов \ Арифметика "на квадратах" \ Разное \ Музыка \ Философия и арифметика музыки \